EE 330 Lecture 12

Back-End Processing Semiconductor Processes

Devices in Semiconductor Processes

- Resistors
- Diodes
- Capacitors
- MOSFET
- BJT

Exam 1 Friday Sept 23

- Exam 2 Friday Oct 21
- Exam 3 Friday Nov 13

Final Tuesday Dec 13 12:00 – 2:00 p.m.

Review from Last Lecture Capacitance in Interconnects

Equivalent Circuit

Review from Last Lecture

Resistance in Interconnects

Interconnect behaves as a "thin" film

Sheet resistance often used instead of conductivity to characterize film

 $\mathbf{R}_{\Box} = \boldsymbol{\rho} / \mathbf{H} \qquad \mathbf{R} = \mathbf{R}_{\Box} [\mathbf{L} / \mathbf{W}]$

Review from Last Lecture

	SCMOS	S SUBM	(lambda=	=0.30)			0.10	0	.00
	SCHO:	dunsi) –	da=0.33)			1	0.00	0	.20
FOX TRANSISTORS	Gł	ATE	N+ACTI	VE P+A	CTIVE	E UN	ITS		
Vth	Pe	oly	>15.	0 <-	15.0	vo	lts		
PROCESS PARAMETERS	N+	P+	POLY	PLY2 H	R PC	01.82	М1	м2	UNITES
Sheet Resistance	83.5	105.3	23.5	999	44	1.2	0.09	0.10	ohms/so
Contact Resistance	64.9	149.7	17.3		29	9.2	0.05	0.97	ohms
Gate Oxide Thicknes	s 142								angstrom
									5
PROCESS PARAMETERS		МЗ	N\PLY	N	W	UN	ITS		
Sheet Resistance		0.05	824	8	16	oh	ms/sq		
Contact Resistance		0.79				oh	ms		
COMMENTS: N\POLY is	N-well u	under p	olysilic	on.					
CAPACITANCE PARAMETE	RS N+	P+	POLY	POLY2	м1	м2	МЗ	N W	UNITS
Area (substrate)	425	731	84	10212	27	12	7	37	aF/1m^2
Area (N+active)			2434		35	16	11		aF/1m^2
Area (P+active)			2335						aF/um^2
Area (poly)				938	56	15	9		aF/um^2
Area (polv2)					49		_		aF/um^2
Area (metal1)						31	13		aF/um^2
Area (metal2)							35		aF/um^2
Fringe (substrate)	344	238			49	33	23		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						51	34		aF/um

Fringe (metal1)		51	34	aF/um
Fringe (metal2)			52	aF/um
Overlap (N+active)	232			aF/um
Overlap (P+active)	312			aF/um

CIRCUIT PARAMETER	RS		UNITS
Inverters	K		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts

Back End Processing

Front End Process Integration for Fabrication of ICs

Front-End Process Flow

- Front-end processing steps analogous to a "recipe" for manufacturing an integrated circuit
- Recipes vary from one process to the next but the same basic steps are used throughout the industry
- Details of the recipe are generally considered proprietary

Back-End Process Flow

Wafer Dicing

www.renishaw.com

Package

Packaged Die

Old Technology but Good for Illustration

Lead Frame (for injection molded package)

Prior to Die Attachment

- 1. Eutectic
- 2. Pre-form
- 3. Conductive Epoxy

Die attached showing bonding wires and likely solder preform or epoxy residue Note alignment is not perfect

Note double bonding wires

NS16032

http://cpu-ns32k.net/Diephotos.html

Electrical Connections (Bonding)

Number of connections can become large (even much larger than shown here)

Electrical Connections (Bonding)

- Wire Bonding
- Bump Bonding

Wire – gold or aluminum 25μ in diameter

Excellent Annimation showing process at :

http://www.kns.com/_Flash/CAP_BONDING_CYCLE.swf

www.kns.com

Ball Bonding Steps

www.kns.com

Ball Bonding Tip

Ball Bond

Termination Bond

Ball Bond Photograph

Bump Bonding

www.secap.org

Packaging

- 1. Many variants in packages now available
- 2. Considerable development ongoing on developing packaging technology
- 3. Cost can vary from few cents to tens of dollars
- 4. Must minimize product loss after packaged
- 5. Choice of package for a product is serious business
- 6. Designer invariably needs to know packaging plans and package models

Packaging

www.necel.com

Packaging

www.necel.com

Pin Pitch Varies with Package Technology

All measurements are nominal in [mm].

Name	Pin pitch	Size	Height
DIP or DIL	2.54		
SOIC-16	1.27	3.9 x 10	1.72
SSOP	0.635		
TSSOP54-II	0.8	12.7 x 22.22	~1
PLCC44	1.27		
PQ208 ^[1]	0.50	28 x 28	3.4
TQFP64	0.40	7 x 7	1.0
TQFP144 ^[2]	0.50	20 x 20	1.0
128PQFP	0.50	23.23 x 14.0	3.15

http://www.electroiq.com/index/display/packaging-articledisplay/234467/articles/advanced-packaging/volume-14/issue-8/features/the-back-end-process/materials-andmethods-for-ic-package-assemblies.htm

From Wikipedia, Sept 20, 2010

http://en.wikipedia.org/wiki/List_of_chip_carriers

Many standard packages available today:

http://www.interfacebus.com/Design_Pack_types.html

BCC: Bump Chip Carrier BGA: Ball Grid Array; BGA graphic BOFP: Bumpered Quad Flat Pack CABGA/SSBGA: Chip Array/Small Scale Ball Grid Array CBGA: Ceramic Ball Grid Array CFP: Ceramic Flat Pack CPGA: Ceramic Pin Grid Array, CPGA Graphic CQFP: Ceramic Quad Flat Pack, CQFP Graphic TBD: Ceramic Lead-Less Chip Carrier DFN: Dual Flat Pack, No Lead **DLCC:** Dual Lead-Less Chip Carrier (Ceramic) ETOFP: Extra Thin Quad Flat Package FBGA: Fine-pitch Ball Grid Array fpBGA: Fine Pitch Ball Grid Array HSBGA: Heat Slug Ball Grid Array JLCC: J-Leaded Chip Carrier (Ceramic) J-Lead Picture LBGA: Low-Profile Ball Grid Array LCC: Leaded Chip Carrier LCC Graphic LCC: Leaded Chip Carrier Un-formed LCC Graphic LCCC: Leaded Ceramic Chip Carrier; LFBGA: Low-Profile, Fine-Pitch Ball Grid Array LGA: Land Grid Array, LGA uP [Pins are on the Motherboard, not the socket] LLCC: Leadless Leaded Chip Carrier LLCC Graphic LOFP: Low Profile Quad Flat Package MCMBGA: Multi Chip Module Ball Grid Array MCMCABGA: Multi Chip Module-Chip Array Ball Grid Array MLCC: Micro Lead-frame Chip Carrier

PBGA: Plastic Ball Grid Array PLCC: Plastic Leaded Chip Carrier PQFD: Plastic Quad Flat Pack PQFP: Plastic Quad Flat Pack PSOP: Plastic Small-Outline Package PSOP graphic **QFP:** Quad Flatpack **QFP** Graphics **QSOP:** Quarter Size Outline Package [Quarter Pitch Small Outline Package] SBGA: Super BGA - above 500 Pin count SOIC: Small Outline IC SO Flat Pack: Small Outline Flat Pack IC SOJ: Small-Outline Package [J-Lead]; J-Lead Picture SOP: Small-Outline Package; SOP IC, Socket SSOP: Shrink Small-Outline Package TBGA: Thin Ball Grid Array TOFP: Thin Quad Flat Pack TOFP Graphic **TSOP:** Thin Small-Outline Package **TSSOP:** Thin Shrink Small-Outline Package TVSOP: Thin Very Small-Outline Package VOFB: Very-thin Quad Flat Pack

Considerable activity today and for years to come on improving packaging technology

- Multiple die in a package
- Three-dimensional chip stacking
- Multiple levels of interconnect in stacks
- Through silicon via technology
- Power and heat management
- Cost driven and cost constrained

The following few slides come from a John Lau presentation

Www.sematech.org/meetings/archives/symposia/10187/Session2/04_Lau.pdf

TSV Interposer: The Most Cost-Effective Integrator for 3D IC Integration

John H. Lau Electronics & Optoelectronics Research Laboratories Industrial Technology Research Institute (ITRI) Chutung, Hsinchu, Taiwan 310, R.O.C. <u>886-3591-3390, johnlau@itri.org.tw</u>

TSV passive interposer supporting high-power chips (e.g., microprocessor and logic) on its top side and low-power chips (e.g., memory) on its bottom side

Special underfills are needed between the Cu -filled interposer and all the chips. Ordinary underfills are needed between the interposer and the organic substrate.

```
ASME InterPACK2011-52189 (Lau)
```

Back-End Process Flow

Testing of Integrated Circuits

Bench testing used to qualify parts for production

Most integrated circuits are tested twice during production

- Wafer Probe Testing
 - Quick test for functionality
 - Usually does not include much parametric testing
 - Relatively fast and low cost test
 - Package costs often quite large
 - Critical to avoid packaging defective parts
- Packaged Part Testing
 - Testing costs for packaged parts can be high
 - Extensive parametric tests done at package level for many parts
 - Data sheet parametrics with Max and Min values are usually tested on all Ics
 - Data sheet parametrics with Typ values are seldom tested
 - Occasionally require testing at two or more temperatures but this is costly
 - Critical to avoid packaging defective parts

Bench Test Environment

Bench Test Environment

Photo courtesy of Texas Instruments

Probe Test

Probes on section of probe card

Probe Test

Pad showing probe marks

Pad showing bonding wire

Die showing wire bonds to package cavity

Probe Test

Production probe test facility

Goal to Identify defective die on wafer

Typical ATE System (less handler)

<u>Automated Test Equipment</u> (ATE)

Test Head

Device Interface Board - DIB (Load Board)

DIBs Vary Considerably from one ATE Platform to another and are often personalized for a particular DUT

Octal Site DIB

Flex Octal (Teradyne)

Final Test

Basic Semiconductor Processes

MOS (Metal Oxide Semiconductor)

n-ch

p-ch

- 1. NMOS
- 2. PMOS
- 3. CMOS
 - Basic Device:
 - Niche Device:
 - Other Devices:

n-ch & p-ch MOSFET MESFET Diode BJT Resistors Capacitors Schottky Diode

Basic Semiconductor Processes

Bipolar

- 1. T²L
- 2. ECL
- 3. l²L
- 4. Linear ICs
 - Basic Device: BJT (Bipolar Junction Transistor)
 - Niche Devices: HBJT (Heterojunction Bipolar Transistor)
 HBT
 - Other Devices: Diode Resistor Capacitor
 Schottky Diode JFET (Junction Field Effect Transistor)

Basic Semiconductor Processes

Other Processes

- Thin and Thick Film Processes
 - Basic Device: Resistor
- BiMOS or BiCMOS
 - Combines both MOS & Bipolar Processes
 - Basic Devices: MOSFET & BJT
- SiGe
 - BJT with HBT implementation
- SiGe / MOS
 - Combines HBT & MOSFET technology
- SOI / SOS (Silicon on Insulator / Silicon on Sapphire)
- Twin-Well & Twin Tub CMOS
 - Very similar to basic CMOS but more optimal transistor char.

Devices in Semiconductor Processes

- Standard CMOS Process
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes

_

- BJT (decent in some processes)
 - npn
 - pnp
- JFET (in some processes)
 - n-channel
 - p-channel
- Standard Bipolar Process
 - BJT
 - npn
 - pnp
 - JFET
 - n-channel
 - p-channel
 - Diodes
 - Resistors
 - Capacitors
- Niche Devices
 - Photodetectors (photodiodes, phototransistors, photoresistors)
 - MESFET
 - HBT
 - Schottky Diode (not Shockley)
 - MEM Devices
 - TRIAC/SCR
 -

Basic Devices

- Niche Devices
 - Photodetectors (photodiodes, phototransistors, photoresistors)
 - MESFET
 - HBT
 - Schottky Diode (not Shockley)
 - MEM Devices
 - TRIAC/SCR

Some Consideration in This Course

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
- MOSFET
- BJT

Stay Safe and Stay Healthy !

End of Lecture 12